翻訳と辞書
Words near each other
・ Erechthias glyphidaula
・ Erechthias grayi
・ Erechthias kerri
・ Erechthias lychnopa
・ Erechthias minuscula
・ Erechthias molynta
・ Erechthias mystacinella
・ Erdős–Kac theorem
・ Erdős–Ko–Rado theorem
・ Erdős–Mordell inequality
・ Erdős–Nagy theorem
・ Erdős–Nicolas number
・ Erdős–Pósa theorem
・ Erdős–Rado theorem
・ Erdős–Rényi model
Erdős–Stone theorem
・ Erdős–Straus conjecture
・ Erdős–Szekeres theorem
・ Erdős–Szemerédi theorem
・ Erdős–Turán conjecture on additive bases
・ Erdős–Turán inequality
・ Erdős–Woods number
・ Erdőtarcsa
・ ERE
・ ERE Informatique
・ Ere Kokkonen
・ Ere language
・ Ere. Elamvazhuthi
・ Ereal
・ ERealty


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Erdős–Stone theorem : ウィキペディア英語版
Erdős–Stone theorem
In extremal graph theory, the Erdős–Stone theorem is an asymptotic result generalising Turán's theorem to bound the number of edges in an ''H''-free graph for a non-complete graph ''H''. It is named after Paul Erdős and Arthur Stone, who proved it in 1946, and it has been described as the “fundamental theorem of extremal graph theory”.
==Extremal functions of Turán graphs==
The extremal function ex(''n''; ''H'') is defined to be the maximum number of edges in a graph of order ''n'' not containing a subgraph isomorphic to ''H''. Turán's theorem says that ex(''n''; ''K''''r'') = ''t''''r'' − 1(''n''), the order of the Turán graph, and that the Turán graph is the unique extremal graph. The Erdős–Stone theorem extends this to graphs not containing ''K''''r''(''t''), the complete ''r''-partite graph with ''t'' vertices in each class (equivalently the Turán graph ''T''(''rt'',''r'')):
:\mbox(n; K_r(t)) = \left( \frac + o(1) \right).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Erdős–Stone theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.